Using Query History to Prune Query Results

Daniel Waegel
Ursinus College
Department of Computer Science
dawaegel@gmail.com

Abstract

The most common retrieval systems run queries indepen-
dently of one another — no data about the queries is re-
tained from query to query. This paper describes an unsu-
pervised learning algorithm that uses information about pre-
vious queries to prune new query results. The algorithm has
two distinct phases. The first trains on a batch of queries;
in doing so, it learns about the collection and the relation-
ship between its documents. It stores this information in a
document-by-document matrix. The second phase uses the
accumulated knowledge to prune query results. Documents
are removed from query results based on their learned rela-
tionship to documents at the top of the results list. The al-
gorithm can be fine-tuned to be very aggressive or more con-
servative in its pruning. This algorithm produces increased
relevancy of the results and significantly reduces the size of
the results list.

Keywords: Query Pruning, Query History, Vector
Space Retrieval

1 Introduction

In information retrieval systems which use traditional
methods, the level of precision is very low. Much time
and effort has been expended to develop methods to
push the most relevant documents to the top of the
query results. Many of these methods have met with
high levels of success; however, the overall precision of
all documents returned by a query is typically still very
low. The theoretical optimum is to have each query
return only the documents which are truly relevant to
it; in practice, even the most advanced systems (such
as the Google search engine) return huge percentages of
the collection which are irrelevant to the query. We have
developed a learning algorithm that can be applied to a
collection to reduce the number of irrelevant documents
returned.

In the next section we set up the terminology needed
to discuss the learning algorithm. In section 3 we discuss
related work and why this line of research is unique.
In section 4 we present an overview of the algorithm
and our preliminary results. In section 5 we offer our

April Kontostathis
Ursinus College
Department of Computer Science
akontostathis@ursinus.edu

concluding comments and present our views on why this
technique holds promise for future research.

2 Background

In this section we set up the terminology that will be
used in the following sections.

2.1 Overview of Information Retrieval In infor-
mation retrieval, data are often categorized with two
entities: terms and documents. Documents are the log-
ical units of a collection — for example, a paragraph, a
web page, an article, or even a whole book. An index
term (or simply term) is a word (or group of words) that
is used to represent the content of the documents in the
collection.

2.1.1 Traditional Vector Space Retrieval Tradi-
tional vector space retrieval is a method where doc-
uments and queries are represented as vectors in t-
dimensional space, where t is the number of indexed
terms in the collection. Generally, the document vectors
are formed when the index for the collection is generated
(these vectors form a matrix that is often referred to as
the ‘term-by-document matrix’), and the query vectors
are formed when a search of the collection is initiated.
In order to determine the relevance of a document to
the query, the similarity between the query vector and
each document vector is computed; the cosine similar-
ity metric is often used [8]. This metric provides an
ordering of the documents, with higher weight assigned
to documents that are considered more relevant to the
query. This ordering is used to assign a rank to each
document, with the document whose weight is highest
assigned rank = 1. Retrieval systems typically return
documents to the user in rank order.

2.1.2 Term Weighting Term-weighting schemes
are commonly applied to the entries in both the query
and the document vectors [8, 3, 5]. The purpose of
weighting schemes is to reduce the relative importance
of high frequency terms while giving words that distin-

guish the documents in a collection a higher weight.

Two term-weighting schemes are used in our ex-
periments. The first is log/entropy and the second
is term frequency /inverse document frequency (abbr.
TF/IDF). Term frequency (F;;) is the number of times
that term 7 appears in the document j. This is the im-
plicit default in vector space retrieval if term weighting
is not explicitly used. Log (1 + logF;;) helps minimize
the impact of a term that appears frequently within a
document.

Inverse document frequency is defined log (%),

where NV is the number of documents in the corpus and
and n; is the number of documents containing term .

Entropy awards higher weights to terms that appear
fewer times in a small number of documents. It is
defined as

N File Fij

~L0g 7

14y S
= log (N)

where Fj; is the number of times term i appears in the
collection [1].

2.1.3 Query Precision and Recall Query preci-
sion and recall are two metrics for measuring the per-
formance of a query. Precision at rank n is number of
relevant documents with rank less than n divided by n.
Recall at rank n is the number of relevant documents
with rank less than n divided by the total number of
relevant documents in the corpus.

2.2 TextMOLE TextMOLE is an information re-
trieval tool that is designed to load collections in a vari-
ety of formats and run queries on the loaded collection
using vector space retrieval [9]. It supports term weight-
ing and integrates many commonly used term weighting
schemes. It also has features to measure query precision
and recall for collections that come with a query file and
a results file. A query file contains a set of standard
queries. The results file links each query in the query
file to the truly relevant documents in the collection. In
section 4.3 we use TextMOLE as the platform for our
experiments.

3 Related Work

Most efforts for improving vector space retrieval con-
centrate on improving the query by adding terms using
some manner of feedback (often implicit and blind) to
improve precision and/or recall [6, 2]. Since the query
becomes much more detailed, the results list has the
documents which match more of the terms closer to the
top and an improvement in precision often occurs. In
one study, improvements in precision at rank 20 rang-
ing from 77-92% were reported in an idyllic, context-rich

scenario [6]. However, in many scenarios where context
was not particularly helpful, the algorithms saw little or
no improvement (and even hurt the results). Unlike our
algorithm, these methods do not typically keep a record
of query histories, nor do they directly modify the query
results list. Our algorithm focuses on pruning the query
results list by actually removing documents.

Methods that do keep track of query histories have
done so for purposes of developing a context for future
queries [7, 4]. They assume that queries will follow a
logical progression and attempt to use that sequence to
enhance the query’s precision with a variety of methods.
These approaches use the query history to narrow in on
what a user is looking for rather than to assemble an
overall perception of the collection. The algorithm we
present in the next section is markedly different in that
it treats queries as independent samples.

4 Algorithm Overview

Traditional vector space retrieval and other retrieval
methods make no provisions for sharing results between
queries. Each query is run independently of every other
query. Over the process of running a batch of queries,
the discarding of the query-results information results
in the loss of data that correlates how documents are
related to one another. We are developing an algorithm
that captures and stores query results data so that the
data may be applied to future queries in order to further
enhance precision.

The algorithm uses learning techniques to deter-
mine which documents are closely related to one an-
other. When two documents both appear at the top
of a ranked list of query results, the odds of them be-
ing related to one another is very high. Conversely, if
one document appears at the top of a ranked query list
and another document does not appear at all, then the
odds of them being unrelated are also very high. When
recording these statistics over the span of many queries,
the algorithm provides information about the relation-
ships between pairs of documents.

The algorithm can apply this information to query
results in order to remove documents. It does this
by taking the top n-ranked documents in the query
results list and comparing their learned relevancies to
the other documents returned. If a document has low
scores, according to the learned data, it is removed (it
is assumed to be not relevant to the query).

The algorithm can be divided into two distinct
phases — the portion which learns the relationship
between documents, and the portion which removes
documents from new query results based on these
learned results.

4.1 Learning Phase The learning phase is the por-
tion of the algorithm that observes which documents are
returned by queries and then extrapolates and records
their relationships.

4.1.1 The Learning Matrix Currently, the algo-
rithm stores the data it learns from queries in a
document-by-document matrix. For each pair of doc-
uments a and b in the collection, there are two entries
in the matrix: (a,b) and (b,a). These two entries are
distinct to the algorithm: (a,b) represents the learned
similarity score of document b to document a; that is,
the score when a appears higher than b in the sorted
query results list, or when a appears in the list and b
does not appear at all. The matrix is not symmetric —
it is possible to have a very strong relation from docu-
ment a to document b but not vice versa (for example,
if the subject of document b is a specialized topic of a
more generalized area discussed by document a).

Two attributes are recorded during the learning
process — the positive associations and the negative
associations. These are recorded separately so that cer-
tain situations, such as whether the documents never
appear in any queries, or whether they are equally pos-
itive and negative, are not ambiguous. Along with the
raw ‘learned similarity score’, each entry in the matrix
also stores the number of queries that contributed to
the score. This is necessary to put the raw score in
perspective.

4.1.2 Assigning Matrix Values For any given
query, the learning algorithm will assign related doc-
uments a score between 1 and 0 for positive and nega-
tive associations. For positive associations, if two docu-
ments have the two highest rankings for a given query,
then they will have a number very close to 1 added to
their raw score. Conversely, the entries that represents
the highest ranked and the lowest ranked documents
will have a number very close to 0 added to their score.
Documents in between these two extremes will have a
value somewhere between 1 and 0 added. In addition to
their placement at the top or bottom of the rankings,
their proximity to one another influences this score. The
closer two documents are to each another, the higher
their score will be. The formula for positive scoring is
shown in equation 4.1. Where a and b are two docu-
ments in the query results list, r, is the rank of a, and
s is the overall size of the query results list.

4.1.3 Negative Weighting The formula for nega-
tive weighting is similar. If a document a is at the top
of the results and a document b is not in the results,
then the entry (a,b) is given a weight of 1. If a docu-

ment a appears at the bottom of the query results, and
document b does not appear at all, then the negative as-
sociation between them would be a number close to 0.
The formula for negative scoring is shown in 4.2. Where
a is the document that appeared in the results and s is
the total size of the results list. For each query, each of
these values are accumulated in the matrix.

(1= 5ml) + (- i)

(4.1)

(4.2)

If neither document appears in the results list then
their scores in the learning matrix are not altered.
When the raw scores are used in the next section, they
are divided by the number of queries that contributed
to their scores, thereby producing the ‘average’ score for
a given number of queries.

4.1.4 Discussion These formulas produce data re-
sults that should capture precisely the data we want
— which documents are related to one another and to
what degree. If the documents consistently appear at
the top of the result lists during querying, then their
averaged scores will be very close to 1. If one document
appears and the other never does, then they will have
a negative association falling somewhere between 0 and
1. In practice, it is very probable that most entries in
the learning matrix will have a combination of positive
and negative scores when training is done.

4.2 Document-Removal Phase Once sufficient
training has been completed, a document-removal phase
attempts to remove extraneous documents from a
query’s results list. This algorithm is used to post-
process the result list produced by traditional vector
space retrieval (described in section 2.1.1).

4.2.1 Removal Criteria The algorithm uses several
different criteria to determine which documents should
be removed from the results list. In an ideal situation,
there would be a threshold at which all relevant doc-
uments had greater positive (or lower negative) scores,
and all non-relevant documents fell below the thresh-
old. Depending on the needs of the particular system,
however, these parameters can be set to remove a larger
number of documents (and potentially remove some rel-
evant documents as well), or ‘play it safe’ and remove
a smaller number of documents and probably not any
truly relevant documents.

The algorithm uses the first n documents as a basis
for comparison to the rest of the documents on the list,

for it is likely that the majority of those documents
are truly relevant to the query. The algorithm then
compares each other document in the results list to each
of those n documents. The ‘threshold’ that these other
documents must pass in order to stay in the results list
is twofold: the first test is to see if the average positive
score between the first n documents and the others is
greater than a threshold z, where x is generally 0.7
or greater. The second test is to compare the ratio
of positive scores to negative scores — this number is
very dependent on the size of the training set, but with
a large amount of training data, ratios around 20:1 or
15:1 produce good results. This is also dependent on the
general strength of the relationship between documents
in a collection. If the collection pertains to a very
specific topic, these ratios may be higher. The second
test against the threshold x is necessary in order to
assure that = is not an aberrant score gained by just
one or two positive scores when the correlation between
the documents has dozens of negative scores as well.

4.2.2 Discussion It is very important to note that
the original precision of queries must be reasonably high
for the first n documents in order for this algorithm
to properly weed out irrelevant documents. If the
precision of the original query is too low, then the
algorithm will not function well and will remove relevant
documents as readily as irrelevant ones. Vector space
retrieval — without any term weighting on the query or
the documents — provides very minimal benefits when
coupled with this approach. This is because normal
vector space retrieval is not accurate without weighting
schemes (it essentially just ranks documents according
to whichever has the most number of words from the
query). However, when vector space retrieval uses term-
weighting schemes (such as log/entropy or TF/IDF),
then the results are much more promising when coupled
with this technique.

4.3 Results Current results have had success, as
shown in Tables 1 and 2. Using the methods described
above, we have been able to successfully reduce the num-
ber of documents returned by a query; the number of
irrelevant documents removed is typically much greater
than the number of relevant documents removed. The
ratio of irrelevant documents removed to relevant docu-
ments removed almost always exceeds the baseline ratio
of irrelevant to relevant in the original results list (if
the ratio was not greater, then one might as well pick
documents to remove at random).

The data in Tables 1 and 2 showcase the algorithm’s
effectiveness when applied to the MED, CACM, and
CISI collections. In each case, the algorithm removed on

average 89.8% of the documents from each query results
list when an aggressive threshold is used. Precision
and recall are calculated using all documents with a
similarity score greater than zero. When the algorithm
is tested using aggressive parameters, on average the
precision rises by 439% and the recall declines by 37%.
When using conservative parameters, the precision rises
by 58.7% and the recall declines by 5.7%.

For all three collections, the same term-weighting
schemes were used throughout the querying process.
The documents were weighted using the log/entropy
scheme and the queries were weighted using the TF /IDF
scheme. These schemes were selected because they are
known to consistently produce accurate results.

For the CISI collection, 49 queries were used for
training and 27 separate queries were used to collect
the test data. For CACM, 21 queries were used for
training and 21 different queries were used to collect
the data. In the MED collection, the same batch of
30 queries was used for both training and testing due
to the small size of the collection. The thresholds used
when aggressively testing the collections: the first 15
documents were used for comparison, documents had a
ratio of at least 10:1 to at least 2 of the first 15, and
the documents had an average positive score of at least
0.65/1.00 to the first 15 documents. The thresholds
when testing conservatively: the first 15 documents
were used for comparison, documents had a ratio of at
least 4:1 to at least 1 of the first 15, and the documents
had an average positive score of at least 0.65/1.00 to the
first 15 documents.

The drop in recall in these results occurs when erro-
neous or misleading information has been incorporated
into the learning matrix. For example, if a document
that is actually relevant to the current query has a neg-
ative association — or a lack of a strong positive associ-
ation — with all or most (depending on the thresholds)
of the documents at the top of the results list then it
would be erroneously removed.

5 Conclusions

The results so far are promising. The capacity to reduce
the size of a query results list from 1000 documents
to 200 or 100 documents without losing any relevant
documents would be a revolutionary achievement in
information retrieval. When this technique is fully
developed, it will provide a method for creating an
extremely high-precision results list with a minimal loss
of relevant data. This would have a positive impact for
a wide variety of applications where high precision is a
necessity, such as medical or law databases.

In addition to developing algorithms to minimize
the loss of recall within the current algorithm, we will

add another step of the algorithm that attempts to

Table 1: Test data across 3 collections (aggressive)

Average Baseline Results Average Post-processed Results
Identifier | Size | Precision | Recall | Size | Precision Recall
MED 440.4 9.4% 89.2% 44.5 41.8% 58.7%
CACM 1256.4 1.3% 90.0% || 176.1 6.4% 70.1%
CISI 1313.3 1.7% 98.0% 87 11.6% 47.0%

Table 2: Test data across 3 collections (conservative)

Average Baseline Results Average Post-processed Results
Identifier | Size | Precision | Recall | Size | Precision Recall
MED 440.4 9.4% 89.2% || 203.7 17.1% 82.5%
CACM 1256.4 1.3% 90.0% || 879.7 2.0% 86.6%
CISI 1313.3 1.7% 98.0% || 930.8 2.4% 92.3%

‘normalize’ the similarity of the first n documents to

[3] Donna Harman.

An experimental study of factors
In Proceedings of

important in document ranking.

each another during removal. Currently the algorithm
assumes that the first n documents are all relevant to
the query, even though in practice this is rarely true. By
comparing these initial documents to one another (again
using the learning matrix) we can throw out documents
that do not fit certain criteria — i.e., we could throw
out documents that are very dissimilar to the rest in the
list.

It is also worth noting that the algorithm can be
fine-tuned to an individual collection in order to greatly
increase performance. We hypothesize that much of this
fine-tuning can be automatically incorporated into the
functionality of the algorithm by scanning the learning
matrix prior to document removal and using statisti-
cal facts about the learning matrix to set or tweak the
removal parameters. Currently we have manually op-
timized the removal algorithm to the CISI and MED
collections, and it has resulted in an increase of preci-
sion and recall. These same parameters also provided
improvement in CACM, even though they are not op-
timized for this collection. When optimization can be
done automatically and dynamically, the effectiveness
of the algorithm will increase dramatically.

References

[1] Kolda Chisholm. New term weighting formulas for the
vector space method in information retrieval. Techni-
cal report, 1999.

[2] Cui, Wen, Nie, and Ma. Probabilistic query expansion
using query logs. In Proceedings of the 11th interna-
tional conference on World Wide Web, pages 325-332,
Honolulu, Hawaii, USA, 2002.

(9]

the Ninth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, pages 186-193, Pisa, Italy, 1986.

Hayes, Avesani, Baldo, and Cunningham. Re-using
implicit knowledge in short-term information profiles
for context-sensitive tasks. In Proceedings of 6th
International Conference on Case-Based Reasoning,
Chicago, Illinois, USA, 2005.

Manning and Schutze. Foundations of Statistical Nat-
ural Language Processing. MIT Press, Cambridge,
MA, USA, 1999.

Mandar Mitra, Amit Singhal, and Chris Buckley. Im-
proving automatic query expansion. In Proceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 206214, Melbourne, Australia, 1998.

Xuehua Shen, Bin Tan, and ChengXiang Zhai.
Context-sensitive information retrieval using implicit
feedback. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 43-50, Sal-
vador, Brazil, 2005.

C. J. van Rijsbergen. Information Retrieval. Butter-
worths, London, UK, 1979.

Daniel Waegel and April Kontostathis. Textmole: Text
mining operations library and environment. In Pro-
ceedings of the 2006 Technical Symposium on Com-
puter Science Education, Houston, TX, USA, 2006.

